Moore-Hodgson: Minimizing the number of late jobs

The following algorithm due to Moore and Hodgson schedules jobs on a single machine minimizing the number of late jobs:

- 1. sort jobs in order of increasing due date: $d_i \uparrow$;
- 2. start with scheduled job set $J_0 = \emptyset$, load $\lambda = 0$;
- 3. for j = 1, ..., n, if $\lambda + p_j \le d_j$, then $J_j = J_{j-1} \cup \{j\}$; $\lambda = \lambda + p_j$; otherwise, let $j_{\max} \in J_{j-1} \cup \{j\}$ have largest processing time; set $J_j = J_{j-1} \cup \{j\} \setminus \{j_{\max}\}$; $\lambda = \lambda + p_j p_{j_{\max}}$.
- 4. Schedule jobs in J_n in order of due date; discard jobs not in J_n or schedule them in any order after the jobs in J_n .

Claim: Moore-Hodgson yields a schedule with a minimum number of late jobs.

Proof: assume the jobs are already in due date order. Then the claim is equivalent to: (*) for each k = 1, ..., n J_k is a maximum cardinality feasible subset of $S(k) := \{1, ..., k\}$. We prove a slightly stronger statement: (**) for each k = 1, ..., n J_k is a maximum cardinality feasible subset of $S(k) := \{1, ..., k\}$, and among all maximum cardinality feasible sets, J_k has smallest total length.

To prove (**) let N(k) denote the true maximum cardinality of a feasible subset of S(k), and let F_k denote such a maximum cardinality set of minimum total length. Here *feasible* means that the subset can be scheduled in time, which can be tested by checking the EDD-schedule for F_k . Assuming that (**) is not true, consider the smallest counter-example. Evidently, n > 1, since for a single job, $J_1 = \emptyset$ if and only if N(1) = 0 if and only if $p_1 > d_1$.

By minimality we have that $|J_{n-1}| = N(n-1)$ and $p(J_{n-1}) = p(F_{n-1})$. Note that $|J_{n-1}| \le |J_n| \le |J_{n-1}| + 1$, and similarly, $N(n-1) \le N(n) \le N(n-1) + 1$, and furthermore $|J_n| \le N(n)$. As (**) is not true we must have

- (a) $|J_{n-1}| = |J_n|$ and N(n) = N(n-1) + 1, or
- (b) $|J_n| = N(n)$ but J_n is not of minimum total length.

If we are in case (a), then there set F_n is of size N(n) and contains job n. But then $F_n \setminus \{n\}$ has size N(n-1) and has total length at least that of J_{n-1} . F_n is feasible, hence its EDD-schedule is feasible. It ends with job n, which means that $J_{n-1} \cup \{n\}$ is also feasible. Hence $J_n = J_{n-1} \cup \{n\}$ contradicting (a).

If we are in case (b) and moreover N(n) = N(n-1) + 1, then $n \in J_n$, and $n \in F_n$ with $|F_n| = |J_n|$, and $p(F_n) < p(J_n)$. But then $p(F_n \setminus \{n\}) < p(J_{n-1})$, contradicting the minimum length of J_{n-1} .

If we are in case (b) and N(n) = N(n-1), then $|J_n| \leq |F(n)| = |J_{n-1}|$. So insertion of n was followed by deletion of some job k, and so $p(J_n) \leq p(J_{n-1}) = p(F_{n-1})$. Now it follows from $p(F_n) < p(J_n)$, that $n \in F_n$. Now, let $j_{\max} = \arg \max\{p(j)|j \in J_{n-1} \cup \{n\}\}$, and let $j_1 = \max\{j|j \in J_{n-1} \setminus F_n\}$. Then $p(F_n \cup \{j_1\} \setminus \{n\}) = p(F_n) + p(j_1) - p(n) < p(J_n) + p(j_1) - p(n) \leq p(J_n) + p(j_{\max}) - p(n) = p(J_{n-1}) = p(F_{n-1})$.

Note that by definition of j_1 , the set J' of all jobs in J_{n-1} higher than j_1 belongs to F_n as well. From the schedule for F_n remove job n and jobs J', process remaining jobs as early as

possible, next process job j_1 and then jobs J' in EDD order. Then the latter jobs complete earlier than they do in the schedule for J_{n-1} , as $p(F_n) + p(j_1) - p(n) < p(J_{n-1})$. So the set $F_n \cup \{j_1\} \setminus \{n\}$ is feasible, contradicting the minimality of $p(F_{n-1})$.