
Moore-Hodgson: Minimizing the number of late jobs

The following algorithm due to Moore and Hodgson schedules jobs on a single machine min-
imizing the number of late jobs:

1. sort jobs in order of increasing due date: dj ↑;

2. start with scheduled job set J0 = ∅, load λ = 0;

3. for j = 1, . . . , n, if λ+ pj ≤ dj , then Jj = Jj−1 ∪ {j}; λ = λ+ pj ; otherwise, let jmax ∈
Jj−1∪{j} have largest processing time; set Jj = Jj−1∪{j}\{jmax}; λ = λ+pj −pjmax .

4. Schedule jobs in Jn in order of due date; discard jobs not in Jn or schedule them in any
order after the jobs in Jn.

Claim: Moore-Hodgson yields a schedule with a minimum number of late jobs.

Proof: assume the jobs are already in due date order. Then the claim is equivalent to: (*)
for each k = 1, . . . , n Jk is a maximum cardinality feasible subset of S(k) := {1, . . . , k}. We
prove a slightly stronger statement: (**) for each k = 1, . . . , n Jk is a maximum cardinality
feasible subset of S(k) := {1, . . . , k}, and among all maximum cardinality feasible sets, Jk has
smallest total length.

To prove (**) let N(k) denote the true maximum cardinality of a feasible subset of S(k),
and let Fk denote such a maximum cardinality set of minimum total length. Here feasible
means that the subset can be scheduled in time, which can be tested by checking the EDD-
schedule for Fk. Assuming that (**) is not true, consider the smallest counter-example.
Evidently, n > 1, since for a single job, J1 = ∅ if and only if N(1) = 0 if and only if p1 > d1.

By minimality we have that |Jn−1| = N(n − 1) and p(Jn−1) = p(Fn−1). Note that
|Jn−1| ≤ |Jn| ≤ |Jn−1|+ 1, and similarly, N(n− 1) ≤ N(n) ≤ N(n− 1) + 1, and furthermore
|Jn| ≤ N(n). As (**) is not true we must have

(a) |Jn−1| = |Jn| and N(n) = N(n− 1) + 1, or

(b) |Jn| = N(n) but Jn is not of minimum total length.

If we are in case (a), then there set Fn is of size N(n) and contains job n. But then Fn \ {n}
has size N(n − 1) and has total length at least that of Jn−1. Fn is feasible, hence its EDD-
schedule is feasible. It ends with job n, which means that Jn−1 ∪ {n} is also feasible. Hence
Jn = Jn−1 ∪ {n} contradicting (a).

If we are in case (b) and moreover N(n) = N(n − 1) + 1, then n ∈ Jn, and n ∈ Fn with
|Fn| = |Jn|, and p(Fn) < p(Jn). But then p(Fn \ {n}) < p(Jn−1), contradicting the minimum
length of Jn−1.

If we are in case (b) and N(n) = N(n − 1), then |Jn| ≤ |F (n)| = |Jn−1|. So insertion
of n was followed by deletion of some job k, and so p(Jn) ≤ p(Jn−1) = p(Fn−1). Now it
follows from p(Fn) < p(Jn), that n ∈ Fn. Now, let jmax = arg max{p(j)|j ∈ Jn−1 ∪ {n}},
and let j1 = max{j|j ∈ Jn−1 \ Fn}. Then p(Fn ∪ {j1} \ {n}) = p(Fn) + p(j1) − p(n) <
p(Jn) + p(j1)− p(n) ≤ p(Jn) + p(jmax)− p(n) = p(Jn−1) = p(Fn−1).

Note that by definition of j1, the set J ′ of all jobs in Jn−1 higher than j1 belongs to Fn as
well. From the schedule for Fn remove job n and jobs J ′, process remaining jobs as early as

1

possible, next process job j1 and then jobs J ′ in EDD order. Then the latter jobs complete
earlier than they do in the schedule for Jn−1, as p(Fn) + p(j1) − p(n) < p(Jn−1). So the set
Fn ∪ {j1} \ {n} is feasible, contradicting the minimality of p(Fn−1).

2

